Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (2024)

Have you ever thought of the amount of data you create every day? Every credit card transaction, every message you send, even every web page you open… It all sums up to a total of 2.5 quintillion bytes of data that the global population produces on a daily basis.

This opens endless opportunities for the most forward-thinking businesses across a number of domains to capitalize on that data, and the banking industry is no exception.

While digital banking is used by almost half of the world’s adult population, financial institutions have enough data at hand to rethink the way they operate, to become more efficient, more customer-centric, and, as a result, more profitable. The question is: how do you get the most out of your data to keep up with the competition?

In this article, we will talk about common use cases for big data in banking (with real-life examples).

To start with, let’s take a step back to see the bigger picture and talk about the role of big data in banking.

The importance of big data in banking: The main benefits for your business

According to the study by IDC, the worldwide revenue for big data and business analytics solutions is expected to reach $260 billion by 2022. This year, the projected numbers will hit $166 billion, up 11.7% compared to 2017.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (1)

It comes as no surprise that banking is one of the business domains that makes the highest investment in big data and BA technologies.

The benefits of big data in banking are pretty clear:

  1. Big data gives you a full view on your business: from customer behavior patterns to internal process efficiency and even broader market trends. This means you can make informed, data-driven decision and, subsequently, obtain business results.
  2. It allows you to optimize and streamline your internal processes with the help of machine learning and AI. As a result, you get a significant performance boost and reduced operating costs.
  3. Big data analytics in banking can be used to enhance your cybersecurity and reduce risks. By using intelligent algorithms, you can detect fraud and prevent potentially malicious actions.

Big data challenges in banking

On the other hand, there are certain roadblocks to big data implementation in banking. Namely, some of the major big data challenges in banking include the following:

Legacy systems struggle to keep up

The banking sector has always been relatively slow to innovate: 92 of the top 100 world leading banks still rely on IBM mainframes in their operations. No wonder fintech adoption is so high. Compared to the customer-centric and agile startups, traditional financial institutions stand no chance.

However, when it comes to big data, things get even worse: most legacy systems can’t cope with the growing workload. Trying to collect, store, and analyze the required amounts of data using an outdated infrastructure can put the stability of your entire system at risk.

As a result, organizations face the challenge of growing their processing capacities or completely re-building their systems to take up the challenge.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (3)

The bigger the data, the higher the risk

Secondly, where there’s data there’s risk (especially taking into account the legacy problem we’ve mentioned above). It is clear that banking providers need to make sure the user data they accumulate and process remains safe at all times.

Yet, only 38% of organizations worldwide are ready to handle the threat, according to ISACA International. That is why cybersecurity remains one of the most burning issues in banking.

Plus, data security regulations are getting stringent. The introduction of GDPR has placed certain restrictions on businesses worldwide that want to collect and apply users’ data. This should also be taken into account.

Big data is getting too big

With so many different kinds of data and its total volume, it’s no surprise that businesses struggle to cope with it. This becomes even more obvious when trying to separate the valuable data from the useless.

While the share of potentially useful data is growing, there is still too much irrelevant data to sort out. This means that businesses need to prepare themselves and bolster their methods for analyzing even more data, and, if possible, find a new application for the data that has been considered irrelevant.

Despite the mentioned challenges, the advantages of big data in banking easily justify any risks. The insights it gives you, the resources it frees up, the money it saves – data is a universal fuel that can propel your business to the top.

The question is how to use big data in banking to its full potential.

5 big data use cases in banking

Data is known to be one of the most valuable assets a business can have. Yet, it’s not the data itself that matters. It’s what you do with it.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (4)

To spark your creativity, here are some examples of big data applications in banking.

! See this one pager to understand your journey to becoming a data-driven company.

1. Personalized customer experience

According to Oracle, 84% of the surveyed executives agree that customers are looking for a more individualized, tailored experience. The report also states that the ability to offer users what they need can bring you up to an 18% higher annual revenue.

Just like other businesses across a number of domains, banks use big data to get to know their users and, as a result, find new ways to cater to them, connect in a more meaningful way, and deliver more value.

Your data can give you valuable insights into user behavior and help you optimize your customer experience accordingly. For example, by having a complete customer profile and exhaustive data on product engagement at hand, you can predict and prevent churn.

This approach is reportedly used at American Express. The company’s Australian branch relies on sophisticated predictive models to forecast and prevent customer churn.

By analyzing the data about previous transactions (as well as 115 other variables), they can identify accounts that are most likely to close within the next couple of months. As a result, the organization can take preventive actions and keep their customers from churning.

Read more about financial organizations using big data and AI to improve customer experience here.

2. User segmentation and targeting

McKinsey finds that using data to make better decisions can save up to 15-20% of your marketing budget. Taking into account that banks spend on average 8% of their overall budgets on marketing, tapping into big data sounds like a great opportunity to not only save, but generate additional revenue through highly targeted marketing strategies.

By using big data, you can better understand your customers’ needs, pinpoint problems in your product targeting and find the best way to fix existing problems.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (5)

For example, Barclays has been using the so-called “social listening”, i.e. sentiment analysis, to source actionable insights from user activity on social networks.

When the company launched its mobile app, many people were unhappy with the fact that users under 18 were unable to transfer or receive money. The dissatisfied customers reacted by voicing their disappointment on social media.

As soon as the data collected by Barclays revealed the problem, the company was able to fix the issue by allowing users aged 16+ to access the app’s full capabilities.

3. Business process optimization and automation

Further research from McKinsey reveals that around 30% of all work in banks can be automated through technology, and the key to this lies in big data.

As a result of advanced automation, banks can experience significant cost savings and reduce the risk of failure by eliminating the human factor from some critical processes.

JP Morgan Chase & Co. is one of the automation pioneers in the banking services industry. The company currently employs several artificial intelligence and machine learning programs to optimize some of their processes, including algorithmic trading and commercial-loan agreements interpretation.

One of its programs, called LOXM, relies on historical data drawn from billions of transactions enabling them to trade equities “at maximum speed and at optimal prices”, reports Business Insider. The process has proven to be far more efficient than both manual and the automated trading used earlier, and resulted in significant savings for the company.

Another data-based automation initiative from JP Morgan Chase is known as COIN. The machine learning algorithm, powered by the company’s private cloud network, is used to reduce the time needed to review documents: this task which previously required about 360,000 hours of work, now takes just a few seconds to complete.

The program also significantly decreased the human error associated with loan-servicing.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (6)

4. Improved cybersecurity and risk management

On top of optimizing its internal processes, as mentioned above, JP Morgan Chase relies on big data and AI to identify fraud and prevent terrorist activities among its own employees. The bank processes vast amounts of data to identify individual behavior patterns and reveal potential risks.

Another leading financial service provider, CitiBank, is also betting big on big data technologies. The company is investing in promising startups and is establishing partnerships with tech companies as a part of its initiative called Citi Ventures. Cybersecurity is one of the major spheres of interest the company has been exploring recently.

As a part of this strategic move, CitiBank invested in Feedzai, a data science company that uses real-time machine learning and predictive modeling to analyze big data to pinpoint fraudulent behavior and minimize financial risk for online banking providers.

As a result, CitiBank can spot any suspicious transactions, e.g. incorrect or unusual charges, and promptly notify users about them. Apart from being useful for consumers, the service also helps payment providers and retailers monitor all financial activity and identify threats related to their business.

5. Better employee performance and management

Big data solutions in banking allow companies to collect, make sense of and share branch (as well as individual employee) performance metrics across departments in real time. This means better visibility into the day-to-day operations and an elevated ability to proactively solve any issues.

A global banking provider, BNP Paribas, collects and analyzes data on its branch productivity to identify and swiftly fix existing problems in real time.

Using the company’s data analytics software, branch managers, as well as chief executives, can get a birds-eye-view on the branch’s performance based on a number of metrics, i.e. customer acquisition and retention, employee efficiency and turnover, etc.

Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (7)

The future of big data in banking looks bright: Make sure to keep up

As you can see, there are many examples of how big data is used in banking. Yet, all those attempts have barely scratched the surface. The maximum potential of big data in banking is still to be harnessed.

According to the whitepaper by Global Transaction Banking, 62% of banks agree that big data is critical to their success. Yet, only 29% of them report getting enough business value from their data.

Banks need to rethink their operations and adopt data-driven approaches if they want to stay relevant and competitive. Plus, big data in the banking sector can help you improve and grow your business.

If you are looking to explore this opportunity but are struggling to find appropriate big data applications in the banking sector for your business, we at Eastern Peak can help you out.

Our team has vast experience implementing fintech products of different complexities as well as building big data solutions from scratch. Among other projects, we helped Western Union implement an advanced data mining solution to collect, normalize, visualize, and analyze various financial data on a daily basis.

So, if you want to discuss opportunities and big data implementation options in banking, call us now at +1.646.889.1939 or request for a personal consultation using our contact form.

Read also:

  • Personal Finance App Development
  • General Data Protection Regulation: What Does It Mean to Your Business And How to Comply?
  • Cloud Migration: Guidance for Your Digital Transformation
Big Data in the Banking Industry: The Main Challenges and Use Cases | Eastern Peak (2024)
Top Articles
Latest Posts
Article information

Author: Barbera Armstrong

Last Updated:

Views: 6528

Rating: 4.9 / 5 (59 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Barbera Armstrong

Birthday: 1992-09-12

Address: Suite 993 99852 Daugherty Causeway, Ritchiehaven, VT 49630

Phone: +5026838435397

Job: National Engineer

Hobby: Listening to music, Board games, Photography, Ice skating, LARPing, Kite flying, Rugby

Introduction: My name is Barbera Armstrong, I am a lovely, delightful, cooperative, funny, enchanting, vivacious, tender person who loves writing and wants to share my knowledge and understanding with you.